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Abstract. Currently, the variable-coefficient nonlinear Schrödinger (NLS)-typed models have attracted
considerable attention in such fields as plasma physics, nonlinear optics, arterial mechanics and Bose-
Einstein condensates. Motivated by the recent work of Tian et al. [Eur. Phys. J. B 47, 329 (2005)], this paper
is devoted to finding all the cases for a more generalized NLS equation with time- and space-dependent
coefficients to be mapped onto the standard one. With the computerized symbolic computation, three
transformations and relevant constraint conditions on the coefficient functions are obtained, which turn
out to be more general than those previously published in the literature. Via these transformations, the Lax
pairs are also derived under the corresponding conditions. For physical applications, our transformations
provide the feasibility for more currently-important inhomogeneous NLS models to be transformed into
the homogeneous one. Applications of those transformations to several example models are illustrated and
some soliton-like solutions are also graphically discussed.

PACS. 05.45.Yv Solitons – 02.30.Ik Integrable systems – 42.81.Dp Propagation, scattering, and losses;
solitons – 02.70.Wz Symbolic computation (computer algebra)

1 Introduction

As one of the most important and “universal” nonlin-
ear models of modern science, the standard nonlinear
Schrödinger (NLS) equation [1,2],

i ut + uxx ± 2 |u|2 u = 0, (1)

appears in many branches of physics and applied math-
ematics, including nonlinear quantum field theory, con-
densed matter and plasma physics, nonlinear optics and
quantum electronics, fluid mechanics, theory of turbulence
and phase transitions, biophysics, and star formation [2,3].
But in various real physical backgrounds, the variable-
coefficient NLS-typed models are often considered to be
more realistic than the standard one in that the vari-
able coefficients can reflect the inhomogeneities of me-
dia and nonuniformities of boundaries [4–24]. Therefore,
a lot of inhomogeneous NLS models with time- and/or
space-dependent coefficients have been derived to describe
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a large variety of complicated situations in different phys-
ical contexts. Some physically-interesting examples are as
follows:

(1) Space and laboratory plasmas are of current impor-
tance [25]. In a weakly inhomogeneous plasma, the
propagation of envelope solitons obeys the following
modified NLS equation [4–6],

i qt + qxx +
[
2 |q|2 − F (x, t)

]
q = 0, (2)

where F (x, t) denotes the inhomogeneity effect. When
F (x, t) = x, equation (2) can be used to describe the
low-frequency plasma dynamics in the case of resonant
absorption of electromagnetic waves in fully ionized
inhomogeneous plasmas [7] and soliton excitation by
an incident electromagnetic wave in an inhomogeneous
overdense plasma [8].

(2) In a real optical-fiber transmission system, the vary-
ing dispersion, Kerr nonlinearity, loss/gain and phase
modulation are of practical importance with the con-
sideration of the inhomogeneities resulting from such
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factors as the variation in the lattice parameters of
the fiber media and fluctuation of the fiber’s diame-
ters [9]. Currently, many efforts have been devoted to
the following two newly-proposed inhomogeneous NLS
models [10,11]:

i uz +
D(z)

2
utt +R(z) |u|2 u+ iΓ (z)u+M(z) t2 u = 0,

(3)
and

i uz+
D(z)

2
utt+R(z) |u|2 u+iΓ (z)u+iΠ (z) |u|2u = 0,

(4)
where u(z, t) is the complex envelope of the electri-
cal field in a comoving frame, z is the propagation
distance, t is the retarded time, D(z), R(z), Γ (z),
M(z) and Π (z) are the inhomogeneous functions re-
spectively related to the group velocity dispersion,
self-phase modulation, linear loss/gain, phase modu-
lation and nonlinear loss/gain. In practical applica-
tions, equations (3) and (4) and their various special
forms [12–21] are of considerable value not only for the
description of amplification/absorption and compres-
sion/broadening of optical solitons in inhomogeneous
optical-fiber systems [10–16], but also for the study of
stable transmission of managed solitons [11,18–21].

(3) In arterial mechanics [22], treating the arteries as thin-
walled, linearly tapered, prestressed elastic tubes and
blood as an incompressible viscous fluid, the governing
equation which models the weakly nonlinear waves in
such a fluid-filled elastic tube with variable radiuses
is the dissipative NLS equation with variable coeffi-
cients [23],

i Uτ + µ1 Uξξ + µ2 |U |2 U + i µ3Θ τ Uξ

+
(
µ4Θ2 τ2 + µ5Θ ξ − µ6Θ2 τ ξ + i µ7

)
U = 0, (5)

where τ and ξ are the stretched coordinates from the
time and axial coordinates after static deformation,
U corresponds to the dynamical radial displacement
upon such initial static deformation, Θ represents the
tapering angle, µ1 and µ2 are the arterial-system pa-
rameters, µ3, µ4, µ5 and µ6 stand for the contribution
of variable radiuses, whereas µ7 gives the contribution
of dissipation resulting from the viscosity of the fluid.
Equivalently, equation (5) can be written as

i ut + µ1 uxx + µ2 |u|2 u+ i µ7 u− V (x, t)u = 0, (6)

with the transformation

x = ξ − µ3 Θ τ2

2
, t = τ, u(x, t) = U(ξ, τ), (7)

where

V (x, t) = µ6Θ2 x t− µ5Θx

+
µ3 µ6 Θ3 t3 − (2µ4 + µ3 µ5)Θ2 t2

2
. (8)

(4) At low temperatures, the dynamics of a repulsive
quasi-one-dimensional Bose-Einstein condensate, ori-
ented along the x axis, can be described by the one-
dimensional time-dependent Gross-Pitaevskii equa-
tion [24],

i �ψt = − �
2

2m
ψxx + V̄ (x)ψ + g(t) |ψ|2 ψ, (9)

where ψ is the mean-field Bose-Einstein condensate
wave function, m is the atomic mass, g(t) is the non-
linearity coefficient accounting for the interatomic in-
teraction, and V̄ (x) represents the external potential
assumed to be the usual harmonic trap.

In recent years, there has been a growing interest in
studying the variable-coefficient nonlinear evolution equa-
tions (NLEEs) which provide a large family of powerful
models for describing the real-world situations in many
fields of physical and engineering sciences [25,26]. How-
ever, those time- and/or space-dependent coefficient func-
tions often bring about an unexpected increase of inves-
tigation difficulties owing to the involvement of a great
amount of integral and differential calculations which are
unmanageable manually. Fortunately, with the develop-
ment of computer sciences and technologies, symbolic
computation as a new branch of artificial intelligence is
becoming an important tool to analytically investigate
the NLEEs and relevant solitonic phenomena [25–27]. The
proposition of various methods based on the computerized
symbolic computation [27] has made it exercisable to deal
with the coefficient functions in the NLEEs under inves-
tigation.

It deserves to be specially noted that a straightfor-
ward and efficient method [12,28–32] for investigating
the variable-coefficient NLEEs is to transform them into
some known constant-coefficient equations with symbolic
computation. For example, reference [12] has successfully
transformed the following generalized variable-coefficient
NLS equation,

i ut + k(t)uxx + l(t) |u|2 u = −iΓ (t)u, (10)

which arises from space/laboratory plasmas, fluid dynam-
ics and optical fibers, into the standard and cylindri-
cal NLS equations under certain constraint conditions
on the coefficient functions. In order to transform more
currently-important inhomogeneous NLS models from
various branches of physics into the homogeneous one, we
in this paper consider a more generalized NLS equation
with time- and space-dependent coefficients as below:

i ut + f(t)uxx + [ i g1(t) + g2(t) ] |u|2 u
+ [ i h1(t) + h2(x, t) ]u = 0, (11)

where u is a complex function of x and t, f(t), g1(t),
g2(t) and h1(t) are all real analytical functions of t, and
h2(x, t) is a real analytical function of x and t. Note that
the above-mentioned six inhomogeneous NLS models (i.e.,
Eqs. (2–4), (6), (9) and (10)) are all the special cases of
equation (11).
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The structure of the present paper is as follows. In Sec-
tion 2, with the aid of symbolic computation, we will (a)
construct the transformations from equation (11) to the
standard NLS equation, (b) find the relevant constraint
conditions on the coefficient functions, and (c) compare
our results with those previously reported. In Section 3,
via the obtained transformations, we will derive the Lax
pairs for equation (11) with the corresponding constraint
conditions. At last, Section 4 will present the discussions
about the applications of our transformations in some
physical fields.

2 More general transformations
to the standard NLS equation

Analogous to reference [12], we assume the transformation
for equation (11) to be of the following general form

u = α(t) ei β(x,t) U [X(x, t), T (t) ] , (12)

where α(t) �= 0 and β(x, t) are two real functions, while
X(x, t) with Xx �= 0 and T (t) are two complex functions
which is different from the assumption of real functions
in reference [12] (see format (11) there), because of the
existence of the term i g1(t) |u|2 u in equation (11).

2.1 Symbolic manipulations

Directly inserting format (12) into equation (11) and re-
quiring that U(X,T ) should satisfy the standard NLS
equation, i.e.,

i UT + UXX ± 2 |U |2U = 0, (13)

one can get the following system of equations:

2 f X2
x = ±α2 (i g1 + g2) , (14)

2T ′ = ±α2 (i g1 + g2) , (15)
iXt + 2 i f Xx βx + f Xxx = 0, (16)
αh1 + α′ + αf βxx = 0, (17)
h2 − βt − f β2

x = 0, (18)

where the prime sign denotes the differentiation with re-
spect to t. Starting from equations (14–18), our intention
in what follows is twofold: the first is to perform sym-
bolic computation and work out the analytical expressions
of α(t), β(x, t), X(x, t) and T (t); the second is to find
the constraint conditions on f(t), g1(t), g2(t), h1(t) and
h2(x, t).

By equations (14) and (15), we can firstly get the fol-
lowing results:

X = i ζ1(t)x + ζ2(t)x + i η1(t) + η2(t), (19)

T = ± i

2

∫
α2 g1 dt± 1

2

∫
α2 g2 dt+ δ, (20)

with the constraint conditions,

g1 = ± 4 f ζ1(t) ζ2(t)
α2

, (21)

g2 = ± 2 f ζ2
2 (t) − 2 f ζ2

1 (t)
α2

, (22)

where δ is an arbitrary complex constant, ζ1(t), ζ2(t), η1(t)
and η2(t) are four real functions to be further determined.
Then, substituting equation (19) into equation (16), af-
ter calculation, the resulting equation can be equivalently
split into

x ζ′1 + η′1 + 2 f ζ1 βx = 0, (23)

x ζ′2 + η′2 + 2 f ζ2 βx = 0, (24)

which are combined with equation (18), determining that
β(x, t) and h2(x, t) are both the general quadratic poly-
nomials with respect to x of the forms

β = β2(t)x2 + β1(t)x+ β0(t), (25)
h2 = ϑ(t)x2 + θ(t)x + σ(t), (26)

where ϑ(t), θ(t) and σ(t) are all arbitrary real analytical
functions of t, while β0(t), β1(t) and β2(t) are three func-
tions to be further determined. Thus, equations (17), (18),
(23) and (24) with the substitution of expressions (25) and
(26) turn out to be

α′ + αh1 + 2αf β2 = 0, (27)
(
ϑ− 4 f β2

2 − β′
2

)
x2 + (θ − 4 f β1 β2 − β′

1) x

+σ − f β2
1 − β′

0 = 0, (28)
(ζ′1 + 4 f ζ1 β2) x+ η′1 + 2 f ζ1 β1 = 0, (29)
(ζ′2 + 4 f ζ2 β2) x+ η′2 + 2 f ζ2 β1 = 0, (30)

which are solved for ζ1(t), ζ2(t), η1(t), η2(t), β0(t), β1(t)
and β2(t) by virtue of symbolic computation (details ig-
nored), giving rise to three transformations for equa-
tion (11), as follows:

The first transformation from equation (11) to equa-
tion (13):

u(1)(x, t) = c e−
∫

h1(t) dt U [X(x, t), T (t) ]

× ei
{

[
∫

θ(t)dt+c3]x−
∫

f(t)[
∫

θ(t)dt+c3]
2dt+

∫
σ(t)dt+c4

}
, (31)

with

X(x, t) = (ic1+c2)
{
x− 2

∫
f(t)

[∫
θ(t)dt+c3

]
dt

}
+c5,

(32)

T (t) = (i c1 + c2)
2
∫
f(t) dt+ δ1, (33)

and f(t), g1(t), g2(t), h1(t), h2(x, t) satisfying
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

h2(x, t) = θ(t)x + σ(t),

g1(t) = ± 4 c1 c2
c2

e2
∫

h1(t) dtf(t),

g2(t) = ± 2
(
c22 − c21

)

c2
e2
∫

h1(t)dtf(t),

(34)
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where δ1 and c5 are two arbitrary complex constants, c �=
0, c1, c2, c3 and c4 are all arbitrary real constants.

The second transformation from equation (11) to equa-
tion (13):

u(2)(x, t)= c̄e−
∫

[h1(t)+2f(t)χ1(t)]dtU [X(x, t), T (t)]

×ei
{
χ1(t)x2+χ1(t)χ2(t)x+

∫
[σ(t)−f(t)χ2

1(t)χ2
2(t)]dt+̄c5

}
, (35)

with

X(x, t) = (ic̄1+ c̄2)
[
χ1(t)x−2

∫
f(t)χ2

1(t)χ2(t)dt
]
+ c̄6,

(36)

T (t) =
(c̄1 − i c̄2)

2
χ1(t)

4
+ δ2, (37)

and f(t), g1(t), g2(t), h1(t), h2(x, t) satisfying
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

h2(x, t) = θ(t)x+ σ(t),

g1(t) = ± 4 c̄1 c̄2
c̄2

χ1(t) e2
∫

h1(t) dtf(t),

g2(t) = ± 2
(
c̄22 − c̄21

)

c̄2
χ1(t) e2

∫
h1(t) dtf(t),

(38)

where χ1(t) and χ2(t) are defined as

χ1(t) =
1

4
∫
f(t) dt+ c̄3

, χ2(t) =
∫

θ(t)
χ1(t)

dt+ c̄4, (39)

δ2 and c̄6 are two arbitrary complex constants, c̄ �= 0, c̄1,
c̄2, c̄3, c̄4 and c̄5 are all arbitrary real constants.

The third transformation from equation (11) to equa-
tion (13):

u(3)(x, t) = c̃ e−
∫
[ h1(t)+2 f(t) β2(t) ] dtU [X(x, t), T (t) ]

× ei
{

β2(t) x2+χ3(t) χ4(t) x+
∫
[σ(t)−f(t) χ2

3(t) χ2
4(t) ] dt+c̃5

}
,

(40)

with

X(x, t) = (i c̃1 + c̃2)
[
χ3(t)x − 2

∫
f(t)χ2

3(t)χ4(t) dt
]

+ c̃6,

(41)

T (t) = (i c̃1 + c̃2)
2
∫
f(t)χ2

3(t) dt+ δ3, (42)

and f(t), g1(t), g2(t), h1(t), h2(x, t) satisfying
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

h2(x, t) = ϑ(t)x2 + θ(t)x + σ(t),

g1(t) = ± 4 c̃1 c̃2
c̃2

χ3(t) e2
∫

h1(t) dtf(t),

g2(t) = ± 2
(
c̃22 − c̃21

)

c̃2
χ3(t) e2

∫
h1(t) dtf(t),

(43)

where χ3(t) and χ4(t) are defined as

χ3(t) = e−4
∫

f(t) β2(t) dt, χ4(t) =
∫

θ(t)
χ3(t)

dt+ c̃4, (44)

δ3 and c̃6 are two arbitrary complex constants, c̃ �= 0, c̃1,
c̃2, c̃3, c̃4 and c̃5 are all arbitrary real constants, and β2(t)
satisfies

β′
2(t) + 4 f(t)β2

2(t) − ϑ(t) = 0 with ϑ(t) �= 0. (45)

Here, it is a formidable task to give the general solution
for β2(t) because equation (45) is a Ricatti equation with
two arbitrary coefficient functions f(t) and ϑ(t). How-
ever, equation (45) indeed includes the most general cases
of transforming equation (11) into equation (13) when
h2,xx �= 0, for example, equations (48) and (49) as below.

2.2 Comparisons with other existing results

For equation (11), conditions (34), (38) and (43) consti-
tute its most general cases to be transformable into the
standard NLS equation. Compared with many previously-
published papers, the above-obtained transformations and
relevant constraint conditions are found to be more
broader than other existing results:

1. When g1(t) = 0 and h2(x, t) = 0, via the first two
transformations in the above subsection, we are actu-
ally able to get four transformations for equation (10)
to be mapped onto the standard NLS equation, i.e.,
transformation (31) with c1 = 0 and c2 �= 0, trans-
formation (35) with c̄1 = 0 and c̄2 �= 0, transforma-
tion (31) with c1 �= 0 and c2 = 0, and transforma-
tion (35) with c̄1 �= 0 and c̄2 = 0, where the first two
cases have been given in reference [12] (i.e., transfor-
mations A and B there), while the last two cases have
not been reported as far as we know.

2. As stated in reference [29], the following variable-
coefficient NLS equation which is a special case of
equation (11),

i ut + p(t)uxx + q(t) |u|2 u = 0, (46)

can be transformed into the standard one when p(t)
and q(t) satisfy the Painlevé-integrable condition of
equation (46),

p(t) = q(t)
[
a1

∫
p(t) dt+ a2

]
, (47)

with a1 and a2 as two arbitrary real constants, where
a1 = 0 and a1 �= 0 correspond to the special cases of
conditions (34) and (38), respectively.

3. References [30,33] have given another two special
variable-coefficient NLS equations which are both
transformable into the standard one, as follows:

i ut + uxx − 2 |u|2 u = a(x, t)u + i β3(t)u, (48)

and

i ut + uxx + g̃1 T0 sech(
√
K0 t) |u|2 u+

K0

4
x2 u = 0,

(49)
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(
φ

(2)
1

φ
(2)
2

)

t

=

(
(c̄1 − i c̄2) f(t) χ2

1(t)A2 − (c̄1 − i c̄2) f(t) χ1(t) ρ2 B2

± (c̄1 − i c̄2) f(t) χ1(t) ρ∗
2 C2 − (c̄1 − i c̄2) f(t) χ2

1(t)A2

)(
φ

(2)
1

φ
(2)
2

)

, (60)

ρ2 =
1

c̄
e
∫
[ h1(t)+2 f(t) χ1(t) ] dt−i

{
χ1(t) x2+χ1(t) χ2(t) x+

∫
[ σ(t)−f(t)χ2

1(t) χ2
2(t)] dt+c̄5

}
, (61)

where a(x, t) is defined as

a(x, t) =
[
1
2
β′

3 − β2
3(t)

]
x2 + α1(t)x+ α2(t), (50)

β3(t), α1(t) and α2(t) are all arbitrary analytical func-
tions, K0, T0 and g̃1 are all real constants. Through
symbolic substitution, it can be easily proved that the
coefficient functions in equations (48) and (49) satisfy
conditions (43).

For other variable-coefficient NLS-typed equations
which can be transformed into equation (13), we refer the
readers to references [4,7,8,10,19,23,31,32] and references
therein.

3 Lax pairs for equation (11) via symbolic
computation

Each of the three transformations obtained in Section 2
maps a subclass of the solutions of equation (11) onto
equation (13) whose initial value problem is solvable
through the method of inverse scattering [1]. Since the
properties and solutions of equation (13) have been stud-
ied in great detail, as seen, e.g., in references [1,2] and
references therein, the investigations for many variable-
coefficient NLS-typed equations in which the coefficient
functions satisfy conditions (34), (38) or (43) can be based
on equation (13).

When g1(t) = 0, using transformations (31), (35) and
(40), we can easily derive the linear scattering problems
(i.e., Lax pairs) for equation (11) respectively under con-
ditions (34), (38) and (43). It is well-known that equa-
tion (13) is associated with the following linear scattering
problem [1,2], expressed as

(
φ1

φ2

)

X

=
(−i λ U
∓U∗ i λ

)(
φ1

φ2

)
, (51)

(
φ1

φ2

)

T

=
(−2 i λ2 ± i U U∗ 2λU + i UX

∓ 2λU∗ ± i U∗
X 2 i λ2 ∓ i U U∗

)(
φ1

φ2

)
, (52)

where φ1 and φ2 are two components of the vector eigen-
function, λ is the spectral parameter which is a complex
constant, and the star superscript denotes the complex
conjugate. Combining equations (51) and (52) with trans-
formations (31), (35) and (40), after tedious substitution,
derivation, simplification and other manipulations on the

computerized symbolic computation system (details ig-
nored), we have three linear scattering problems for equa-
tion (11):

The first Lax pair corresponding to conditions (34)
with c1 = 0 or c2 = 0:
(
φ

(1)
1

φ
(1)
2

)

x

=
(

λ (c1 − i c2) (i c1 + c2) ρ1 u
∓ (i c1 + c2) ρ∗1 u∗ −λ (c1 − i c2)

)(
φ

(1)
1

φ
(1)
2

)

,

(53)

(
φ

(1)
1

φ
(1)
2

)

t

=

(
(c1 − ic2) f(t)A1 − (c1 − ic2) f(t)ρ1B1

± (c1 − ic2) f(t)ρ∗1C1 − (c1 − ic2) f(t)A1

)(
φ

(1)
1

φ
(1)
2

)

,

(54)

with

ρ1 =
1
c
e
∫

h1(t) dt−i
{

[
∫

θ(t) dt+c3] x−∫ f(t) [
∫

θ(t)dt+c3]
2 dt+

∫
σ(t) dt+c4

}
,

(55)

A1 = ∓ (i c1 + c2) u u∗

c2
e2
∫

h1(t) dt

−2λ
[∫

θ(t) dt− i λ c1 − λ c2 + c3

]
, (56)

B1 =
[
i

∫
θ(t) dt + 2λ c1 − 2 i λ c2 + i c3

]
u+ ux , (57)

C1 =
[
i

∫
θ(t) dt+ 2λ c1 − 2 i λ c2 + i c3

]
u∗ − u∗x . (58)

The second Lax pair corresponding to conditions (38)
with c̄1 = 0 or c̄2 = 0:

(
φ

(2)
1

φ
(2)
2

)

x

=

(
λ (c̄1 − i c̄2) χ1(t) (i c̄1 + c̄2) χ1(t) ρ2 u

∓ (i c̄1 + c̄2) χ1(t) ρ∗2 u
∗ −λ (c̄1 − i c̄2) χ1(t)

)(
φ

(2)
1

φ
(2)
2

)

,

(59)

see equation (60) above

with

see equation (61) above
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(
φ

(3)
1

φ
(3)
2

)

t

=

(
(c̃1 − i c̃2) f(t) χ2

3(t)A3 − (c̃1 − i c̃2) f(t)χ2
3(t) ρ3 B3

± (c̃1 − i c̃2) f(t)χ2
3(t) ρ∗

3 C3 − (c̃1 − i c̃2) f(t) χ2
3(t) A3

)(
φ

(3)
1

φ
(3)
2

)

, (66)

ρ3 =
1

c̃
e
∫
[ h1(t)+2 f(t) β2(t) ] dt−i

{
β2(t) x2+χ3(t) χ4(t) x+

∫
[ σ(t)−f(t)χ2

3(t) χ2
4(t) ] dt+c̃5

}
, (67)

A2 = ∓ (i c̄1 + c̄2)u u∗

c̄2
e2
∫

[h1(t)+2 f(t)χ1(t)]dt

− 2λ [2x+ χ2(t) − iλc̄1 − λc̄2] , (62)
B2 = i [2x+ χ2(t) − 2iλc̄1 − 2λc̄2]χ1(t)u+ ux, (63)
C2 = i [2x+ χ2(t) − 2iλc̄1 − 2λc̄2]χ1(t)u∗ − u∗x, (64)

where χ1(t) and χ2(t) have been defined in equations (39).
The third Lax pair corresponding to conditions (43)

with c̃1 = 0 or c̃2 = 0:

(
φ

(3)
1

φ
(3)
2

)

x

=

(
λ (c̃1 − i c̃2) χ3(t) (i c̃1 + c̃2) χ3(t) ρ3 u

∓ (i c̃1 + c̃2) χ3(t) ρ∗3 u
∗ −λ (c̃1 − i c̃2) χ3(t)

)(
φ

(3)
1

φ
(3)
2

)

,

(65)

see equation (66) above

with

see equation (67) above

A3 = ∓ (ic̃1 + c̃2)uu∗

c̃2
e2
∫
[h1(t)+2 f(t)β2(t)]dt

−2λ
[
2β2(t)
χ3(t)

x+ χ4(t) − iλc̃1 − λc̃2

]
, (68)

B3 = [iχ4(t) + 2λc̃1−2iλc̃2]u+
2ixβ2(t)u+ux

χ3(t)
, (69)

C3 = [iχ4(t)+2λc̃1−2iλc̃2]u∗+
2ixβ2(t)u∗−u∗x

χ3(t)
,(70)

where χ3(t) and χ4(t) have been defined in equations (44),
and β2(t) satisfies equation (45).

It is easy to verify that the compatibility conditions
φ

(j)
1,xt = φ

(j)
1,tx and φ

(j)
2,xt = φ

(j)
2,tx (j = 1, 2 and 3) lead to

equation (11) with the respective constraint conditions,
which suggests that equation (11) with g1(t) = 0 is in-
tegrable provided that conditions (34), (38) or (43) are
satisfied. Besides, we recall that the three Lax pairs pre-
sented above are all the isospectral scattering problems.

When g1(t) �= 0, it is unsuccessful in attempting to
employ transformations (31), (35) and (40) to obtain the
Lax pairs for equation (11) under conditions (34), (38)
or (43) from equations (51) and (52), because the compat-
ibility conditions yield redundant equations except equa-
tion (11). We think that the failure is caused by the trans-
formations of dependent variables from the real-valued
space to complex-valued one due to the existence of the
term i g1(t) |u|2 u in equation (11). More detailed expla-
nations need to be further explored.

4 Applications and discussions

The coefficient functions in equation (11), although hard
to be dealt with, play a practical role in the description
for various nonlinear wave phenomena in diverse inhomo-
geneous media. The construction of three transformations
from equation (11) to the standard NLS equation makes
it possible to study many variable-coefficient NLS-typed
models under conditions (34), (38) or (43). In this sec-
tion, to further show the physical relevance of transfor-
mations (31), (35) and (40), we will apply the three trans-
formations to some example models aforementioned and
discuss relevant physical mechanism.

4.1 Stable curve soliton excitations in arbitrary linearly
inhomogeneous plasmas

Generally, the electromagnetic wave propagation in plas-
mas is strongly affected by both the nonlinearity and
nonuniformity of the medium [4]. In the presence of a lin-
ear, time-dependent density profile, the propagation of an
electron plasma wave packet with very large wavelength
and finite amplitude is described by a special form of equa-
tion (2) [4,5],

i qt + qxx +
[
2 |q|2 − ᾱ(t)x

]
q = 0, (71)

where ᾱ(t) is an arbitrary analytical function of t. In this
case, we can utilize transformation (31) to derive the fol-
lowing bright one-soliton-like solution:

q = Ā1 sech
[
Ā1 ξ1(x, t)

]
ei ω1(x,t)+i (Ā2

1−k2
1) t, (72)

ξ1(x, t) = x− 2 k1 t+ 2
∫ (∫

ᾱ(t) dt
)
dt, (73)

ω1(x, t) =
[
k1 −

∫
ᾱ(t) dt

]
x+ 2 k1

∫ (∫
ᾱ(t) dt

)
dt

−
∫ (∫

ᾱ(t) dt
)2

dt, (74)

where Ā1 and k1 are two nonzero real constants. Obvi-
ously, it can be seen from solution (72) that the soliton
amplitude |Ā1| is always kept invariant, while the soliton
velocity and acceleration are respectively as follows:

v = 2 k1 − 2
∫
ᾱ(t) dt and v̇ = −2 ᾱ(t), (75)

which suggest that the linearly inhomogeneous coeffi-
cient ᾱ(t) leads to the accelerated propagation of nonlin-
ear wave packet. Figure 1, with ᾱ(t) chosen as a constant,
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Fig. 1. Intensity profile of a parabolic soliton via solution (72)
for ᾱ(t) = 0.25 with the acceleration v̇ = − 0.5. The related
parameters are chosen as Ā1 = 1.24 and k1 = 1.

Fig. 2. Intensity profile of a cubic soliton via solution (72) for
ᾱ(t) = − 0.025 t+ 0.225 with the acceleration v̇ = 0.05 t−0.45.
The choice of other parameters follows Figure 1.

Fig. 3. Intensity profile of a periodically oscillating soliton via
solution (72) for ᾱ(t) = 4 sin(2 t) with the acceleration v̇ =
− 8 sin(2 t). The choice of other parameters follows Figure 1.

shows that the soliton is uniformly accelerated with the
same acceleration in a linear, time-independent density
profile. When ᾱ(t) �= constant, Figures 2 and 3 display a
couple of nonuniformly accelerated soliton structures, cor-
responding to two different linear time-dependent inhomo-
geneities. It is also noted that

∫ +∞
−∞ |q|2 dx is a conserved

quantity of equation (71). Therefore, we know that the
linear inhomogeneity ᾱ(t)x does not affect the integra-
bility of equation (71), and that the stable propagation
of the soliton with unchangeable amplitude, width and
shape (but the velocity is exceptional) is supported in an
arbitrary linearly inhomogeneous plasma.

4.2 Stationary localized envelope pulses with the linear
fiber loss/gain and frequency chirping

In the case of an interplay between the linear fiber
loss/gain and initial chirping, the pulse propagation in
such a fiber is characterized by a special form of equa-

Fig. 4. A propagating envelope pulse with the linear fiber
gain and frequency chirp. The related parameters are chosen
as Ā2 = 0.95, k2 = 0.1 and β̄ = − 0.015.

tion (3) [34]

i uz + utt + 2 |u|2 u+ i γ u+ β̄2 t2 u = 0, (76)

where β̄2 t2 u is the quadratic phase chirp term, γ > 0
(or γ < 0) accounts for the linear loss (or gain) rate. Via
transformation (40), equation (76) can be reduced to

i UZ + UTT + 2 |U |2U = i e4 β̄ z
(
β̄ − γ

)
U, (77)

with Z = (1 − e−4 β̄ z)/4 β̄, T = e−2 β̄ z t and u(t, z) =
e

i
2 β̄ t2−2 β̄ z U(T, Z). It is obvious that equation (77) be-

comes the standard NLS equation when γ = β̄ which
means the exact balance between the linear fiber loss/gain
and pulse chirp terms. Similarly, we can also obtain the
bright one-soliton-like solution for equation (76) with γ =
β̄ as below,

u = Ā2e
−2β̄zsech

[
Ā2e

−2β̄zξ2(t, z)
]
eiω2(t,z)+i 1

2 β̄t2 ,(78)

ξ2(t, z) = t− k2

2 β̄
(e2 β̄ z − e−2 β̄ z), (79)

ω2(t, z) = k2 e
−2 β̄ z t+

Ā2
2 − k2

2

4 β̄
(1 − e−4 β̄ z), (80)

with the amplitude |Ā2| e−2 β̄ z and the width |Ā2|−1 e2 β̄ z ,
where Ā2 and k2 are two nonzero real constants.

For different signs of β̄, there are two types of pulse
propagating modes. In Figure 4, it can be observed that
the pulse amplitude monotonously grows owing to the
fiber gain while the pulse width gets narrow as a result of
the frequency chirping both in an exponential way during
the propagation. Figure 5 illustrates the effect of a pulse
with amplitude attenuating and width broadening as it
progresses along the length of the fiber. Our analysis re-
veals that the envelope pulses described by equation (76)
with γ = β̄ are stationary localized objects which in prac-
tice are more attractive in realistic optical communication
systems [18]. The localized stability of such pulses could be
explained from the nonconservation of its physical quanti-
ties. Through symbolic calculations, the first conservation
law of equation (76) with γ = β̄ can be given as

i
∂
(
e2 β̄ z |u|2)

∂z
+
∂
[
e2 β̄ z

(
ut u

∗ − u∗t u
)]

∂t
= 0, (81)
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Fig. 5. A propagating envelope pulse with the linear fiber
loss and frequency chirp. The related parameters are chosen as
Ā2 = 1.75, k2 = 0.1 and β̄ = 0.012.

where e2 β̄ z |u|2 and e2 β̄ z
(
ut u

∗ − u∗t u
)
, respectively, cor-

respond to the conserved density and flux with a modifi-
cation by multiplication of e2 β̄ z to counteract the atten-
uation/growth caused by the linear fiber loss/gain. Using
the vanishing boundary condition for solution (78), we can
compute out the corresponding conserved quantity,

∫ +∞

−∞
e2 β̄ z |u|2 dt = 2 |Ā2|, (82)

which indicates that the quantity
∫ +∞
−∞ |u|2 dt will expo-

nentially decay/grow as the rate e−2 β̄ z .
In real optical fibers, the chirping parameter may not

be equal to the square of the linear loss/gain rate, i.e., γ �=
β̄. However, we notice a fact that if β̄ < 0 the right hand of
equation (77) will near zero as the normalized distance z
increases, which implies that solution (78) with β̄ < 0 can
be used as an approximate solution for equation (76) when
γ �= β̄.

4.3 Optical pulses with variable dispersion,
Kerr nonlinearity and loss/gain

Considering the variability of group velocity dispersion,
self-phase modulation, linear and nonlinear loss/gain, the
pulse dynamics in such a monomode optical fiber is gov-
erned by equation (4) with distributed coefficients [11],
for which there are two cases to be transformed into equa-
tion (13), as follows:

Π (z) = ± 2 b1 b2
b2

e2
∫
Γ(z) dzD(z), (83)

R(z) = ±
(
b22 − b21

)

b2
e2
∫
Γ(z) dzD(z), (84)

and

Π (z) = ± 2 b1 b2
b2

e2
∫
Γ(z) dzD(z)χ(z), (85)

R(z) = ± ( b22 − b21)
b2

e2
∫
Γ(z) dzD(z)χ(z), (86)

where χ(z) is defined as

χ(z) =
1

2
∫
D(z) dz + b3

, (87)

and b �= 0, b1, b2 and b3 are all arbitrary real constants.
If b1 = 0, it is noted that conditions (84) and (86)

actually constitute the integrable cases for equation (4)
with Π (z) = 0 to pass the Painlevé test [35], which sug-
gests that the generation of optical solitons is still based on
the balance among the coefficient functions in addition to
the exact balance between the group velocity dispersion
and self-phase modulation. On the other hand, we no-
tice that there exists only one constraint equation among
D(z), R(z) and Γ (z), i.e., condition (84) or (86). Accord-
ingly, with different choices of the coefficient functions, a
rich class of soliton-like solutions can be obtained for de-
scribing various fiber systems such as periodically-varying
management system [21], exponentially distributed con-
trol system [15] and dispersion decreasing fiber system
with nonlinear barriers [17]. Under condition (84) or (86),
the first conservation law of equation (4) with Π (z) = 0
can be derived as

i
∂
(
e2
∫
Γ(z) dz |u|2)

∂z
+
∂
[
1
2 D(z)

(
ut u

∗ − u∗t u
)]

∂t
= 0, (88)

where e2
∫
Γ(z) dz |u|2 and 1

2 D(z)
(
ut u

∗ − u∗t u
)
, respec-

tively, correspond to the conserved density and flux. Here,
we can see that for equation (4) under condition (84) or
(86) with b1 = 0, the soliton-like solution is stable with-
out the linear loss/gain term while with inclusion of Γ (z)
the soliton-like solution is a localized object. For noninte-
grable conditions, we consider the following general case:

i uz +
D(z)

2
utt+e2

∫
Γ(z) dz D(z) |u|2 u+i r(z)u = 0, (89)

which can be transformed into

i UZ + UTT + 2 |U |2U = i
2[Γ (z) − r(z)]

D(z)
U, (90)

with u(t, z) = ei [t− 1
2

∫
D(z) dz]−∫ Γ (z) dz U(T, Z), T =

t − ∫D(z) dz and Z = 1
2

∫
D(z) dz. When

∣∣[Γ (z) −
r(z)]/D(z)

∣∣ � 1, the solutions of equation (89) can
be approximated by the solutions of equation (4) with
R(z) = e2

∫
Γ(z) dz D(z) and Π (z) = 0.

From the integrable viewpoint, recent applications and
developments of equation (4) in the absence of the non-
linear loss/gain term include the following:

(a) For condition (86) with D(z) = R(z) = 1 and b1 = 0,
reference [13] has found a growing, chirped, soliton-
like solution without phase modulation which is self-
similar and suggests the possibility of clean and effi-
cient nonlinear compression of chirped solitary waves
with appropriate tailoring of the gain as a function of
distance.

(b) In reference [21], a systematic way has been developed
to find an infinite number of novel stable bright and
dark “ soliton islands” in a “ sea of solitary waves”
of equation (4) with Π (z) = 0 under certain condi-
tions (i.e., conditions (3) and (5) there) which corre-
spond to two special cases of condition (86). Some spe-
cial soliton-like solutions have also been constructed
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Fig. 6. Amplitude profile of an unstable optical pulse with the
related parameters and functions chosen as Ā3 = 1.75, k3 = 1,
b1 = 0.15, b2 = 0.75, D(z) = 0.15 and Γ (z) = 0.

for different soliton management conditions including
the soliton dispersion management, soliton amplifica-
tion management, soliton pulse width management,
and combined nonlinear and dispersion soliton man-
agement.

(c) Under condition (86), reference [15] has employed the
transformation from equation (4) with Π (z) = 0 to the
known NLS equation and obtained the bright soliton
on a continuous wave background for describing the
modulation instability in inhomogeneous fibers.

(d) When condition (84) is satisfied, reference [17] has in-
vestigated the nonlinear tunneling of optical solitons
through both dispersion and nonlinear barriers de-
scribed by equation (4) with Π (z) = 0, and presented a
cascade compression system in a dispersion decreasing
fiber with nonlinear barriers on an exponential back-
ground.

If Π (z) �= 0, equation (4) is a nonintegrable model
which has not possess soliton solutions [16]. Under condi-
tions (83)–(84) or (85)–(86), the solutions of equation (4)
can be directly obtained by virtue of the known solutions
of equation (13). But in such a way, stable solutions could
be mapped onto the unstable ones because of the extension
of our transformations to the complex domain. For exam-
ple, from the bright one-soliton solution of equation (13),
we can obtain the following solution

u = Ā3 e
− ∫ Γ(z) dz sech

[
Ā3 (i b1 + b2) ξ3(t, z)

]

× ei ω3(t,z), (91)

ξ3(t, z) = t− k3 (i b1 + b2)
∫
D(z) dz, (92)

ω3(t, z) = k3 (i b1 + b2) t+
1
2
(i b1 + b2)

2 (
Ā2

3 − k2
3

)

×
∫
D(z) dz, (93)

the modulus of which is unstable along the propagation
due to the existence of a singularity (see Fig. 6), where
Ā3 and k3 are two nonzero real constants. From condi-
tions (83) and (85), we know that the nonlinear loss/gain
coefficient is in proportion to the Kerr nonlinearity coeffi-
cient. In the case that Π (z) is enough weak compared to

Fig. 7. Stable propagation of an optical pulse in a finite length
of the fiber with weak nonlinear loss effect. The parameters
and functions are the same as those in Figure 6 except that
b1 = 0.008.

Fig. 8. Stable propagation of an optical pulse in a finite length
of the fiber with weak nonlinear loss effect and periodically-
varying distributed coefficients. The parameters and func-
tions are the same as those in Figure 7 except that D(z) =
0.14 sin(0.08 z) + 0.15.

R(z), we choose a very small value for b1 and present Fig-
ures 7 and 8, from which it can be seen that the shape of
the optical pulse keeps invariant for a considerable length
along the fiber and the location where the singularity takes
place is transferred away.

5 Conclusions

Taking into account the inhomogeneities of media and
nonuniformities of boundaries, many variable-coefficient
NLS-typed models have been proposed in various physi-
cal contexts like the envelope soliton excitation in inho-
mogeneous plasmas, pulse dynamics in a real optical-fiber
medium or an averaged, dispersion-managed optical-fibre
system, mechanism of pulse compression in inhomoge-
neous optical-transmission systems, arterial mechanics of
blood flow, dynamics of Bose-Einstein condensates in a
small harmonic trap, etc. In this paper, based on the
work of Tian et al. in reference [12], we have investigated
all the cases for a more generalized variable-coefficient
NLS equation, i.e., equation (11), to be mapped onto the
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standard one. Performing symbolic computation, we have
constructed three transformations from equation (11)
to equation (13) with the respective constraint condi-
tions which recover many previously-published results.
Through the three transformations, some integrable prop-
erties of equation (13) can be directly introduced into
equation (11) with g1(t) = 0 if the relevant constraint
conditions hold, e.g., the Lax pairs presented in Section 3.
We have applied our results to three currently-important
example models and detailed the following: (1) stable
curve soliton excitations in arbitrary linearly inhomoge-
neous plasmas; (2) stationary localized envelope pulses
with the linear fiber loss/gain and frequency chirping; and
(3) propagation of optical pulses with variable dispersion,
Kerr nonlinearity and loss/gain. The physical meaning of
constraint conditions among the coefficient functions and
the stability of soliton-like solutions have also been dis-
cussed.
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